Cookbook¶
Contents
Subsequence extraction¶
myseq = s'CAATAGAGACTAAGCATTAT'
sublen = 5
stride = 2
# explicit for-loop
for subseq in myseq.split(sublen, stride):
print(subseq)
# pipelined
myseq |> split(sublen, stride) |> print
k-mer extraction¶
myseq = s'CAATAGAGACTAAGCATTAT'
stride = 2
# explicit for-loop
for subseq in myseq.kmers(stride, k=5):
print(subseq)
# pipelined
myseq |> kmers(stride, k=5) |> print
Reverse complementation¶
# sequences
s = s'GGATC'
print(~s) # GATCC
# k-mers
k = k'GGATC'
print(~k) # GATCC
k-mer Hamming distance¶
k1 = k'ACGTC'
k2 = k'ACTTA'
# ^ ^
print(abs(k1 - k2)) # Hamming distance = 2
k-mer Hamming neighbors¶
def neighbors(kmer):
for i in range(len(kmer)):
for b in (k'A', k'C', k'G', k'T'):
if kmer[i] != b:
yield kmer |> base(i, b)
print(list(neighbors(k'AGC'))) # CGC, GGC, etc.
k-mer minimizer¶
def minimizer(s, k: Static[int]):
assert len(s) >= k
kmer_min = Kmer[k](s[:k])
for kmer in s[1:].kmers(k=k, step=1):
kmer = min(kmer, ~kmer)
if kmer < kmer_min: kmer_min = kmer
return kmer_min
print(minimizer(s'ACGTACGTACGT', 10))
de Bruijn edge¶
def de_bruijn_edge(a, b):
a = a |> base(0, k'A') # reset first base: [T]GAG -> [A]GAG
b = b >> s'A' # shift right to A: [GAG]C -> A[GAG]
return a == b # suffix of a == prefix of b
print(de_bruijn_edge(k'TGAG', k'GAGC')) # True
print(de_bruijn_edge(k'TCAG', k'GAGC')) # False
Count bases¶
@tuple
class BaseCount:
A: int
C: int
G: int
T: int
def __add__(self, other: BaseCount):
a1, c1, g1, t1 = self
a2, c2, g2, t2 = other
return (a1 + a2, c1 + c2, g1 + g2, t1 + t2)
def count_bases(s):
match s:
case 'A*': return count_bases(s[1:]) + (1,0,0,0)
case 'C*': return count_bases(s[1:]) + (0,1,0,0)
case 'G*': return count_bases(s[1:]) + (0,0,1,0)
case 'T*': return count_bases(s[1:]) + (0,0,0,1)
case _: return BaseCount(0,0,0,0)
print(count_bases(s'ACCGGGTTTT')) # (A: 1, C: 2, G: 3, T: 4)
Spaced seed search¶
def has_spaced_acgt(s):
match s:
case 'A_C_G_T*':
return True
case t if len(t) >= 8:
return has_spaced_acgt(s[1:])
case _:
return False
print(has_spaced_acgt(s'AAATCTGTTAAA')) # True
print(has_spaced_acgt(s'ACGTACGTACGT')) # False
Reverse-complement palindrome¶
def is_own_revcomp(s):
match s:
case 'A*T' | 'T*A' | 'C*G' | 'G*C':
return is_own_revcomp(s[1:-1])
case '':
return True
case _:
return False
print(is_own_revcomp(s'ACGT')) # True
print(is_own_revcomp(s'ATTA')) # False
Sequence alignment¶
# default parameters
s1 = s'CGCGAGTCTT'
s2 = s'CGCAGAGTT'
aln = s1 @ s2
print(aln.cigar, aln.score) # 3M1I6M -3
# custom parameters
# match = 2; mismatch = 4; gap1(k) = 2k + 4; gap2(k) = k + 13
aln = s1.align(s2, a=2, b=4, gapo=4, gape=2, gapo2=13, gape2=1)
print(aln.cigar, aln.score) # 3M1D3M2I2M 2
Reading FASTA/FASTQ¶
# iterate over everything
for r in FASTA('genome.fa'):
print(r.name)
print(r.seq)
# iterate over sequences
for s in FASTA('genome.fa') |> seqs:
print(s)
# iterate over everything
for r in FASTQ('reads.fq'):
print(r.name)
print(r.read)
print(r.qual)
# iterate over sequences
for s in FASTQ('reads.fq') |> seqs:
print(s)
Reading paired-end FASTQ¶
for r1, r2 in zip(FASTQ('reads_1.fq'), FASTQ('reads_2.fq')):
print(r1.name, r2.name)
print(r1.read, r2.read)
print(r1.qual, r2.qual)
Parallel FASTQ processing¶
def process(s: seq):
...
# OMP_NUM_THREADS environment variable controls threads
FASTQ('reads.fq') |> iter ||> process
# Sometimes batching reads into blocks can improve performance,
# especially if each is quick to process.
FASTQ('reads.fq') |> blocks(size=1000) ||> iter |> process
Reading SAM/BAM/CRAM¶
# iterate over everything
for r in SAM('alignments.sam'):
print(r.name)
print(r.read)
print(r.pos)
print(r.mapq)
print(r.cigar)
print(r.reversed)
# etc.
for r in BAM('alignments.bam'):
# ...
for r in CRAM('alignments.cram'):
# ...
# iterate over sequences
for s in SAM('alignments.sam') |> seqs:
print(s)
for s in BAM('alignments.bam') |> seqs:
print(s)
for s in CRAM('alignments.cram') |> seqs:
print(s)
DNA to protein translation¶
dna = s'AGGTCTAACGGC'
protein = dna |> translate
print(protein) # RSNG
Reading protein sequences from FASTA¶
for s in pFASTA('seqs.fasta') |> seqs:
print(s)